实时电价下公共楼宇响应特性分析方法 

宁艺飞1,2,陈星莺1,谢俊1,余昆1,李作锋3,陈振宇3

电力建设 ›› 2018, Vol. 39 ›› Issue (5) : 105.

PDF(4042 KB)
PDF(4042 KB)
电力建设 ›› 2018, Vol. 39 ›› Issue (5) : 105. DOI: 10.3969/j.issn.1000-7229.2018.05.013
智能电网

 实时电价下公共楼宇响应特性分析方法 

  •  宁艺飞1,2,陈星莺1,谢俊1,余昆1,李作锋3,陈振宇3 
     
作者信息 +

 Analysis on Response Characteristics of Public Buildings under Real-Time Price 

  •   NING Yifei1,2,CHEN Xingying1, XIE Jun1, YU Kun1,  LI Zuofeng3, CHEN Zhenyu3 
     
Author information +
文章历史 +

摘要

 摘要:通过实施用户侧的实时电价(real-time pricing,RTP)项目,电力公司和售电公司能够提高电网安全系数,减少电力交易风险。而公共楼宇作为实时电价项目的主要参与者,研究其响应实时电价的特性可以为电力公司和售电公司提供参考。文章建立了实时电价下楼宇用户舒适度效用函数、焦虑度效用函数以及用户电费支出价值函数,在此基础上建立了用户综合效用函数最优的楼宇实时电价响应分析框架。最后在算例中对实时电价下某公共楼宇响应进行仿真分析。结果表明,所提方法可以用于评估公共楼宇响应实时电价的特性。 
 

Abstract

 ABSTRACT: Through the implementation of the real-time price projects for demand side, power company and power-retailing company can improve the safety factor for grid and reduce the risk of electricity transactions. Since the public buildings are the main participants of the real-time price project, the study on their electricity characteristics under real-time price can provide the reference for the power company and power-retailing company. This paper establishes the comfort degree utility function of building customers, the anxiety utility function and the value function of user's electricity expenditure. On this basis, this paper establishes the analysis framework of the building's real-time price response with the optimal user's comprehensive utility function. Finally, an example is given to simulate the response of a public building under real-time price. The results show that the proposed method can be used to evaluate the characteristics of public buildings response to the real-time price. 
 

关键词

 

Key words

 KEYWORDS:  real-time price / public building / response characteristic / prospect theory   

 

引用本文

导出引用
宁艺飞1,2,陈星莺1,谢俊1,余昆1,李作锋3,陈振宇3.  实时电价下公共楼宇响应特性分析方法 [J]. 电力建设. 2018, 39(5): 105 https://doi.org/10.3969/j.issn.1000-7229.2018.05.013
NING Yifei,CHEN Xingying, XIE Jun, YU Kun, LI Zuofeng, CHEN Zhenyu.  Analysis on Response Characteristics of Public Buildings under Real-Time Price [J]. Electric Power Construction. 2018, 39(5): 105 https://doi.org/10.3969/j.issn.1000-7229.2018.05.013
中图分类号:     

参考文献

 [1]张钦, 王锡凡, 王建学, 等. 电力市场下需求响应研究综述[J]. 电力系统自动化, 2008, 32(3): 97-106.
ZHANG Qin, WANG Xifan, WANG Jianxue, et al. Survey of demand response research in deregulated electricity markets[J]. Automation of Electric Power Systems, 2008, 32(3): 97-106. 
[2]张钦, 王锡凡, 王秀丽, 等. 需求侧实时电价下用户购电风险决策[J]. 电力系统自动化, 2008, 32(13): 16-20, 66.
ZHANG Qin, WANG Xifan, WANG Xiuli, et al. Customer's electricity purchasing risk decision integrating demand side real-time pricing[J]. Automation of Electric Power Systems, 2008, 32(13): 16-20, 66. 
[3]SHEEN J N, CHEN C S, WANG T Y. Response of large industrial customers to electricity pricing by voluntary time-of-use in Taiwan[J]. IEE Proceedings-Generation, Transmission and Distribution, 1995, 142(2): 157-166. 
[4]TANG Y, SONG H, HU F, et al. Investigation on TOU pricing principles[C]// 2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific. IEEE, 2005: 1-9. 
[5]SEO D, KOO C, HONG T. A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design[J]. Applied Energy, 2015, 142: 66-79. 
[6]WANG Q, HOLMBERG S. A methodology to assess energy-demand savings and cost effectiveness of retrofitting in existing Swedish residential buildings[J]. Sustainable Cities and Society, 2015, 14: 254-266. 
[7]ANASTASELOS D, OXIZIDIS S, MANOUDIS A, et al. Environmental performance of energy systems of residential buildings: Toward sustainable communities[J]. Sustainable Cities and Society, 2016, 20: 96-108. 
[8]RAHMANI-ANDEBILI M. Modeling nonlinear incentive-based and price-based demand response programs and implementing on real power markets[J]. Electric Power Systems Research, 2016, 132: 115-124. 
[9]RAHMANI-ANDEBILI M. Nonlinear demand response programs for residential customers with nonlinear behavioral models[J]. Energy and Buildings, 2016, 119: 352-362. 
[10]ROOS J G, LANE I E. Industrial power demand response analysis for one-part real-time pricing[J]. IEEE Transactions on Power Systems, 1998, 13(1): 159-164. 
[11]GEDRA T W, VARAIYA P P. Markets and pricing for interruptible electric power[J]. IEEE Transactions on Power Systems, 1993, 8(1): 122-128. 
[12]AALAMI H A, MOGHADDAM M P, YOUSEFI G R. Evaluation of nonlinear models for time-based rates demand response programs[J]. International Journal of Electrical Power & Energy Systems, 2015, 65: 282-290. 
[13]MOHAJERYAMI S, MOGHADDAM I N, DOOSTAN M, et al. A novel economic model for price-based demand response[J]. Electric Power Systems Research, 2016, 135: 1-9. 
[14]曾丹, 姚建国, 杨胜春, 等. 柔性负荷与电网互动的系统动力学仿真模型[J]. 中国电机工程学报, 2014, 34(25): 4227-4233.
ZENG Dan, YAO Jianguo, YANG Shengchun, et al. System dynamics simulation model of flexible load in interactive power grid[J]. Proceedings of the CSEE, 2014, 34(25): 4227-4233. 
[15]王蓓蓓, 杨雪纯, 杨胜春. 基于中长期时间维度的需求响应潜力及效果的系统动力学分析[J]. 中国电机工程学报, 2015, 35 (24): 6368-6377.
WANG Beibei, YANG Xuechun, YANG Shengchun. Demand response performance and potential system dynamic analysis based on the long and medium time dimensions[J]. Proceedings of the CSEE, 2015, 35(24): 6368-6377. 
[16]JUNG D, KRISHNA V B, TEMPLE W G, et al. Data-driven evaluation of building demand response capacity[C]// 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm). IEEE, 2014: 541-547. 
[17]MATHIEU J L, PRICE P N, KILICCOTE S, et al. Quantifying changes in building electricity use, with application to demand response[J]. IEEE Transactions on Smart Grid, 2011, 2(3): 507-518. 
[18]BINA M T, AHMADI D. Stochastic modeling for the next day domestic demand response applications[J]. IEEE Transactions on Power Systems, 2015, 30(6): 2880-2893. 
[19]TRAN N, PHAM C, NGUYEN M, et al. Incentivizing energy reduction for emergency demand response in multi-tenant mixed-use buildings[J]. IEEE Transactions on Smart Grid, 2016, PP(99):1. 
[20]KJARGAARD M B, ARENDT K, CLAUSEN A, et al. Demand response in commercial buildings with an assessable impact on occupant comfort[C]//2016 IEEE International Conference on Smart Grid Communications (SmartGridComm). IEEE, 2016: 447-452. 
[21]CHASSIN D P, RONDEAU D. Aggregate modeling of fast-acting demand response and control under real-time pricing[J]. Applied Energy, 2016, 181: 288-298. 
[22]CHRISTANTONI D, OXIZIDIS S, FLYNN D, et al. Implementation of demand response strategies in a multi-purpose commercial building using a whole-building simulation model approach[J]. Energy and Buildings, 2016, 131: 76-86. 
[23]王蓓蓓, 朱峰, 嵇文路, 等. 中央空调降负荷潜力建模及影响因素分析[J]. 电力系统自动化, 2016, 40(19): 44-52.
WANG Beibei, ZHU Feng, JI Wenlu, et al. Load cutting potential modeling of central air-conditioning and analysis on influencing factors[J]. Automation of Electric Power Systems, 2016, 40(19): 44-52. 
[24]宋梦, 高赐威, 苏卫华. 面向需求响应应用的空调负荷建模及控制[J]. 电力系统自动化, 2016, 40(14): 158-167.
SONG Meng, GAO Ciwei, SU Weihua. Modeling and controlling of air-conditioning load for demand response applications[J]. Automation of Electric Power Systems, 2016, 40(14): 158-167. 
[25]彭堃. 公共楼宇日前用电负荷优化策略研究[D]. 南京: 河海大学, 2016.
PENG Kun. Study on the day ahead load optimization strategy of public building[D]. Nanjing: Hohai University, 2016. 
[26]黄瑞隆, 施文玫. 不同热适应舒适标准在台湾地区的适用性[J]. 暖通空调, 2014(1): 24-28.
HUANG Ruilong, SHI Wenmei. Applicability of different thermal comfort standards in Taiwan[J]. Journal of HV&AC,2014(1): 24-28. 
[27]DE VECCHI R, SORGATO M J, PACHECO M, et al. ASHRAE 55 adaptive model application in hot and humid climates: the Brazilian case[J]. Architectural Science Review, 2015, 58(1): 93-101. 
[28]OLESEN B W. The philosophy behind EN15251: Indoor environmental criteria for design and calculation of energy performance of buildings[J]. Energy and Buildings, 2007, 39(7): 740-749. 
[29]朱峰. 空调负荷需求响应特性及其调控策略研究[D]. 南京:东南大学, 2016.
ZHU Feng. Research on demand response characteristic and control strategy of air conditioning load[D]. Nanjing: Southeast University, 2016.  
[30]李爱梅, 荣恺兮, 高结怡, 等. "时间定价":概念、后果与心理机制[J]. 心理科学进展, 2015, 23(10): 1679-1687.
LI Aimei, RONG Kaixi, GAO Jieyi, et al. "Putting a price on time": Conception, consequences and its psychological mechanism[J]. Advances in Psychological Science, 2015, 23(10): 1679-1687. 
[31]王刚. 基于用电特性的大用户响应实时电价分析方法研究[D]. 南京: 河海大学, 2015.
WANG Gang. The analysis of real-time pricing response based on the electricity characteristics of large customers[D]. Nanjing: Hohai University, 2015. 
[32]丁际刚, 兰肇华. 前景理论述评[J]. 经济学动态, 2002(9): 64-66. 
[33]马最良, 姚杨. 民用建筑空调设计[M]. 北京:化学工业出版社, 2015:64-78. 
[34]辛洁晴, 吴亮. 商务楼中央空调周期性暂停分档控制策略[J]. 电力系统自动化, 2013, 37(5): 49-54.
XIN Jieqing, WU Liang. Hierarchical strategies for duty cycling control of air conditioners in business buildings[J]. Automation of Electric Power Systems, 2013, 37(5): 49-54.   
 

基金

 

PDF(4042 KB)

Accesses

Citation

Detail

段落导航
相关文章
AI小编
你好!我是《电力建设》AI小编,有什么可以帮您的吗?

/